Evaluating Mean Magnetic Field in Flare Loops

نویسندگان

  • Jiong Qiu
  • Gregory D. Fleishman
چکیده

We analyze multiple-wavelength observations of a two-ribbon flare exhibiting apparent expansion motion of the flare ribbons in the lower atmosphere and rising motion of X-ray emission at the top of newly-formed flare loops. We evaluate magnetic reconnection rate in terms of VrBr by measuring the ribbon-expansion velocity (Vr) and the chromospheric magnetic field (Br) swept by the ribbons. We also measure the velocity (Vt) of the apparent rising motion of the loop-top X-ray source, and estimate the mean magnetic field (Bt) at the top of newly-formed flare loops using the relation 〈VtBt〉 ≈ 〈VrBr〉, namely, conservation of reconnection flux along flare loops. For this flare, Bt is found to be 120 and 60 G, respectively, during two emission peaks five minutes apart in the impulsive phase. An estimate of the magnetic field in flare loops is also achieved by analyzing the microwave and hard X-ray spectral observations, yielding B = 250 and 120 G at the two emission peaks, respectively. The measured B from the microwave spectrum is an appropriately-weighted value of magnetic field from the loop top to the loop leg. Therefore, the two methods to evaluate coronal magnetic field in flaring loops produce fully-consistent results in this event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hinode Observations of Vector Magnetic Field Change Associated with a Flare on 2006 December 13

Continuous observations of a flare productive active region 10930 were successfully carried out with the Solar Optical Telescope onboard the Hinode spacecraft during 2007 December 6 to 19. We focus on the evolution of photospheric magnetic fields in this active region, and magnetic field properties at the site of the X3.4 class flare, using a time series of vector field maps with high spatial r...

متن کامل

v 1 3 0 A ug 2 00 5 Multi - wavelength analysis of high energy electrons in solar flares : a case study of August 20 , 2002 flare

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (γ1 = 1.8) hard X-ray spectrum. The flare is studied using RHESSI, Hα, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscatterin...

متن کامل

Solar flares as cascades of reconnecting magnetic loops.

A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Nu...

متن کامل

X-ray Flares and Mass Outflows Driven by Magnetic Interaction between a Protostar and Its Surrounding Disk

We propose a model of hard X-ray flares in protostars observed by ASCA satellite. Assuming that the dipole magnetic field of the protostar threads the protostellar disk, we carried out 2.5-dimensional magnetohydrodynamic (MHD) simulations of the disk-star interaction. The closed magnetic loops connecting the central star and the disk are twisted by the rotation of the disk. As the twist accumul...

متن کامل

Basic topology of twisted magnetic configurations in solar flares

It is accepted now that flare-like phenomena are the result of reconnection of topologically complex magnetic fields. Observations show that such fields are often characterized by a twisted structure. This is modeled here using a force-free flux tube whose arc-like body is embedded into an external potential magnetic field. We study how the topological structure of this configuration evolves wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009